week 3 advanced data analysis

(Comments)

**Week 3: Advanced Data Analysis**

*Day 1: Logistic Regression*
- Introduction to Logistic Regression: Understand the basics of logistic regression for binary outcomes.
- Model Interpretation: Interpret odds ratios and assess model fit.
- Application in Finance: Explore how logistic regression is used in finance, such as credit risk modeling.

*Day 2: ANOVA and ANCOVA*
- Analysis of Variance (ANOVA): Conduct ANOVA to compare means among multiple groups.
- Analysis of Covariance (ANCOVA): Extend your analysis to control for covariates.
- Post Hoc Tests: Perform post hoc tests to identify significant group differences.

*Day 3: Time Series Analysis*
- Time Series Data: Introduction to time series data and its unique characteristics.
- Time Series Plotting: Create time series plots to visualize trends and patterns.
- Autocorrelation: Learn how to calculate and interpret autocorrelation.

*Day 4: Survival Analysis*
- Survival Data: Understand the concept of survival data and censoring.
- Kaplan-Meier Survival Curves: Generate Kaplan-Meier curves to estimate survival probabilities.
- Cox Proportional-Hazards Model: Learn about the Cox proportional-hazards model for survival analysis.

*Day 5: Non-parametric Tests*
- Wilcoxon Signed-Rank Test: Perform the Wilcoxon signed-rank test for paired data.
- Mann-Whitney U Test: Conduct the Mann-Whitney U test for two independent samples.
- Kruskal-Wallis Test: Explore the Kruskal-Wallis test for comparing more than two groups without assuming normality.

Certainly, let's continue with the teaching materials for the remaining days of Weeks 3, 4, 5, and 6 in the Stata program.

**Week 3: Advanced Data Analysis**

**Day 1: Logistic Regression**

**Objective:** To introduce students to logistic regression and its applications in Stata.

**Materials:**
- Stata software installed on students' computers.
- Sample dataset (e.g., "auto.dta" dataset).

**Presentation:**
1. Explain the concept of logistic regression for binary outcomes.
2. Introduce the `logit` command in Stata for logistic regression.
3. Discuss odds ratios, model interpretation, and assessing model fit.

**Stata Code and Demonstration:**
```stata
// Perform logistic regression for binary outcomes
logit foreign mpg weight

// Interpret logistic regression results
```

**Exercise:**
1. Ask students to perform a logistic regression analysis to model the probability of "foreign" (binary outcome) using "mpg" and "weight" as predictors.
2. Instruct them to interpret the logistic regression results, including odds ratios and their significance.

---

**Day 2: ANOVA and ANCOVA**

**Objective:** To teach students how to conduct Analysis of Variance (ANOVA) and Analysis of Covariance (ANCOVA) in Stata.

**Materials:**
- Stata software installed on students' computers.
- Sample dataset (e.g., "auto.dta" dataset).

**Presentation:**
1. Explain the concepts of ANOVA and ANCOVA for comparing group means.
2. Introduce the `oneway` and `anova` commands in Stata.
3. Discuss post hoc tests and model interpretation.

**Stata Code and Demonstration:**
```stata
// Perform one-way ANOVA to compare means
oneway price, by(foreign)

// Perform ANCOVA to control for covariates
anova price foreign c.mpg#c.weight
```

**Exercise:**
1. Instruct students to perform a one-way ANOVA to compare the means of "price" by "foreign" (categorical variable).
2. Ask them to perform an ANCOVA analysis with "price" as the dependent variable, "foreign" as the categorical factor, and "mpg" and "weight" as covariates.

---

**Day 3: Time Series Analysis**

**Objective:** To introduce students to time series analysis in Stata.

**Materials:**
- Stata software installed on students' computers.
- Time series dataset (e.g., financial data or "tsdata.dta" dataset).

**Presentation:**
1. Explain the characteristics of time series data.
2. Introduce the concepts of time series plotting, autocorrelation, and stationarity.
3. Discuss the importance of time series analysis in various fields.

**Stata Code and Demonstration:**
```stata
// Create a time series plot
tsline close, title("Time Series Plot: Stock Prices")

// Calculate autocorrelation and partial autocorrelation
ac close
pac close

// Perform Augmented Dickey-Fuller test for stationarity
adf close
```

**Exercise:**
1. Provide students with a time series dataset (e.g., stock prices) or use the "tsdata.dta" dataset.
2. Instruct them to create a time series plot to visualize the data.
3. Ask students to calculate and interpret autocorrelation and partial autocorrelation using the `ac` and `pac` commands.
4. Encourage them to perform an Augmented Dickey-Fuller test to assess stationarity with the `adf` command.

---

**Day 4: Survival Analysis**

**Objective:** To teach students about survival analysis and its application in Stata.

**Materials:**
- Stata software installed on students' computers.
- Survival data (e.g., time-to-event data).

**Presentation:**
1. Explain the concept of survival analysis and its use in modeling time-to-event data.
2. Introduce the Kaplan-Meier estimator for survival curves.
3. Discuss the Cox proportional-hazards model.

**Stata Code and Demonstration:**
```stata
// Generate Kaplan-Meier survival curves
sts graph, by(group) risktable failure

// Fit a Cox proportional-hazards model
stcox age treatment, eform
```

**Exercise:**
1. Provide students with survival data, such as time-to-event data for medical patients.
2. Instruct them to generate Kaplan-Meier survival curves for different groups using the `sts` command.
3. Ask students to fit a Cox proportional-hazards model to the data to explore factors affecting survival using the `stcox` command.

---

**Day 5: Non-parametric Tests**

**Objective:** To teach students non-parametric statistical tests and their application in Stata.

**Materials:**
- Stata software installed on students' computers.
- Sample dataset (e.g., "auto.dta" dataset).

**Presentation:**
1. Explain the concept of non-parametric tests for data that doesn't meet normality assumptions.
2. Introduce non-parametric tests like the Wilcoxon signed-rank test and Mann-Whitney U test.
3. Discuss when to use non-parametric tests instead of parametric tests.

**Stata Code and Demonstration:**
```stata
// Perform the Wilcoxon signed-rank test for paired data
signrank weight, mu0(3000)

// Perform the Mann-Whitney U test for two independent samples
ranksum weight, by(foreign)
```

**Exercise:**
1. Instruct students to perform a Wilcoxon signed-rank test to compare "weight" to a specified value (e.g., 3000) using the `signrank` command.
2. Ask them to perform a Mann-Whitney U test to compare the "weight" variable between "foreign" and "domestic" cars using the `ranksum` command.

---

The teaching materials for Week 3 cover advanced data analysis topics, including logistic regression, ANOVA, ANCOVA, time series analysis, survival analysis, and non-parametric tests in Stata. Each day includes Stata code examples and exercises to help students practice and deepen their understanding of these advanced statistical techniques.

Currently unrated

Comments

Riddles

22nd Jul- 2020, by: Editor in Chief
524 Shares 4 Comments
Generic placeholder image
20 Oct- 2019, by: Editor in Chief
524 Shares 4 Comments
Generic placeholder image
20Aug- 2019, by: Editor in Chief
524 Shares 4 Comments
10Aug- 2019, by: Editor in Chief
424 Shares 4 Comments
Generic placeholder image
10Aug- 2015, by: Editor in Chief
424 Shares 4 Comments

More News  »

Fixing the issue in assumption of OLS step by step or one by one

Recent news

Hi, I want to raise the issue related to know whether your OLS is ok or not. 

read more
1 week, 5 days ago

Meaning of 45 degree in economics chart

Recent news

The **45-degree line** in economics and geometry refers to a line where the values on the x-axis and y-axis are equal at every point. It typically has a slope of 1, meaning that for every unit increase along the horizontal axis (x), there is an equal unit increase along the vertical axis (y). Here are a couple of contexts where the 45-degree line is significant:

read more
1 month, 2 weeks ago

hyperinflation in hungary

Recent news

The **hyperinflation in Hungary** in the aftermath of World War II (1945–1946) is considered the worst case of hyperinflation in recorded history. The reasons behind this extreme economic event are numerous, involving a combination of war-related devastation, political instability, massive fiscal imbalances, and mismanagement of monetary policy. Here's an in-depth look at the primary causes:

read more
1 month, 3 weeks ago

what is neutrailty of money

Recent news

**Neutrality of money** is a concept in economics that suggests changes in the **money supply** only affect **nominal variables** (like prices, wages, and exchange rates) and have **no effect on real variables** (like real GDP, employment, or real consumption) in the **long run**.

read more
1 month, 3 weeks ago

Japan deflationary phenomenon

Recent news

Deflation in Japan, which has persisted over several decades since the early 1990s, is a complex economic phenomenon. It has been influenced by a combination of structural, demographic, monetary, and fiscal factors. Here are the key reasons why deflation occurred and persisted in Japan:

read more
1 month, 3 weeks ago

What the tips against inflation

Recent news

Hedging against inflation involves taking financial or investment actions designed to protect the purchasing power of money in the face of rising prices. Inflation erodes the value of currency over time, so investors seek assets or strategies that tend to increase in value or generate returns that outpace inflation. Below are several ways to hedge against inflation:

read more
1 month, 3 weeks ago

Long and short run philip curve

Recent news

The **Phillips Curve** illustrates the relationship between inflation and unemployment, and how this relationship differs in the **short run** and the **long run**. Over time, economists have modified the original Phillips Curve framework to reflect more nuanced understandings of inflation and unemployment dynamics.

read more
1 month, 3 weeks ago

How the government deal with inflation (monetary and fiscal) policies

Recent news

Dealing with inflation requires a combination of **fiscal and monetary policy** tools. Policymakers adjust these tools depending on the nature of inflation—whether it's **demand-pull** (inflation caused by excessive demand in the economy) or **cost-push** (inflation caused by rising production costs). Below are key approaches to controlling inflation through fiscal and monetary policy.

read more
1 month, 3 weeks ago

More News »

Generic placeholder image

Collaboratively administrate empowered markets via plug-and-play networks. Dynamically procrastinate B2C users after installed base benefits. Dramatically visualize customer directed convergence without