Using Vertex AI for zero one and two three AI prediction
Recent newsHere is my documentation after learning the introduction of AI in courserERA.
read more(Comments)
So my goal today is pretty simple, be confident with the methodology of statistic in Maatlab!
The video today that I will watch is
Couple of impoortant pooint is
The code can be found here
couple of interesting element
The full code
Demo from the April 14, 2011 webinar titled "Cointegration and Pairs Trading with Econometrics Toolbox."
See also Demo 2
Copyright 2011, The MathWorks, Inc. All rights reserved.
clear; close all; clc
load Data_Canada Y = Data(:,3:end); %meaning all row but only from column 3 to end figure plot(dates,Y,'LineWidth',2) xlabel('Year') ylabel('Percent') names = series(3:end); legend(names,'location','NW') title('{\bf Canadian Interest Rates, 1954-1994}') axis tight grid on
y1 = Y(:,1); % Short-term rate % Levels data: fprintf('=== Test y1 for a unit root ===\n\n') [h1,pVal1] = adftest(y1,'model','ARD') % Left-tail probability fprintf('\n=== Test y1 for stationarity ===\n\n') [h0,pVal0] = kpsstest(y1,'trend',false) % Right-tail probability % Differenced data: fprintf('\n=== Test (1-L)y1 for a unit root ===\n\n') [h1D,pVal1D] = adftest(diff(y1),'model','ARD') % Left-tail probability fprintf('\n=== Test (1-L)y1 for stationarity ===\n\n') [h0D,pVal0D] = kpsstest(diff(y1),'trend',false) % Right-tail probability figure plot(dates(2:end),diff(Y),'LineWidth',2) names = series(3:end); legend(names,'location','NW') title('{\bf Differenced Data}') axis tight grid on
=== Test y1 for a unit root === h1 = 0 pVal1 = 0.2867 === Test y1 for stationarity === Warning: Test statistic #1 above tabulated critical values: minimum p-value = 0.010 reported. h0 = 1 pVal0 = 0.0100 === Test (1-L)y1 for a unit root === Warning: Test statistic #1 below tabulated critical values: minimum p-value = 0.001 reported. h1D = 1 pVal1D = 1.0000e-003 === Test (1-L)y1 for stationarity === Warning: Test statistic #1 below tabulated critical values: maximum p-value = 0.100 reported. h0D = 0 pVal0D = 0.1000
% Run the test with both "tau" (t1) and "z" (t2) statistics: fprintf('\n=== Engle-Granger tests for cointegration ===\n\n') [hEG,pValEG] = egcitest(Y,'test',{'t1','t2'})
=== Engle-Granger tests for cointegration === hEG = 0 1 pValEG = 0.0526 0.0202
% Return the results of the cointegrating regression: [~,~,~,~,reg] = egcitest(Y,'test','t2'); c0 = reg.coeff(1); b = reg.coeff(2:3); figure C = get(gca,'ColorOrder'); set(gca,'NextPlot','ReplaceChildren','ColorOrder',circshift(C,3)) plot(dates,Y*[1;-b]-c0,'LineWidth',2) title('{\bf Cointegrating Relation}') axis tight grid on
% See Documentation: % % Econometrics Toolbox\User's Guide % \Mulivariate Time Series Models % \Cointegration and Error Correction % \Identifying Single Cointegrating Relations % \Estimating VEC Model Parameters
% Permutations of the data variables: P0 = perms([1 2 3]); [~,idx] = unique(P0(:,1)); % Rows of P0 with unique regressand y1 P = P0(idx,:); % Unique regressions numPerms = size(P,1); % Preallocate: T0 = size(Y,1); HEG = zeros(1,numPerms); PValEG = zeros(1,numPerms); CIR = zeros(T0,numPerms); % Run all tests: for i = 1:numPerms YPerm = Y(:,P(i,:)); [h,pVal,~,~,reg] = egcitest(YPerm,'test','t2'); HEG(i) = h; PValEG(i) = pVal; c0i = reg.coeff(1); bi = reg.coeff(2:3); CIR(:,i) = YPerm*[1;-bi]-c0i; end fprintf('\n=== Different Engle-Granger tests, same data ===\n\n') HEG,PValEG % Plot the cointegrating relations: figure C = get(gca,'ColorOrder'); set(gca,'NextPlot','ReplaceChildren','ColorOrder',circshift(C,3)) plot(dates,CIR,'LineWidth',2) title('{\bf Multiple Cointegrating Relations}') legend(strcat({'Cointegrating relation '}, ... num2str((1:numPerms)')),'location','NW'); axis tight grid on
=== Different Engle-Granger tests, same data === HEG = 1 1 0 PValEG = 0.0202 0.0290 0.0625
fprintf('\n=== Johansen tests for cointegration ===\n') [hJ,pValJ] = jcitest(Y,'model','H1','lags',1:2);
=== Johansen tests for cointegration === ************************ Results Summary (Test 1) Data: Y Effective sample size: 39 Model: H1 Lags: 1 Statistic: trace Significance level: 0.05 r h stat cValue pValue eigVal ======================================== 0 1 35.3442 29.7976 0.0104 0.3979 1 1 15.5568 15.4948 0.0490 0.2757 2 0 2.9796 3.8415 0.0843 0.0736 ************************ Results Summary (Test 2) Data: Y Effective sample size: 38 Model: H1 Lags: 2 Statistic: trace Significance level: 0.05 r h stat cValue pValue eigVal ======================================== 0 0 25.8188 29.7976 0.1346 0.2839 1 0 13.1267 15.4948 0.1109 0.2377 2 0 2.8108 3.8415 0.0937 0.0713
[~,~,~,~,mles] = jcitest(Y,'model','H1','lags',2,'display','params'); B = mles.r2.paramVals.B % Cointegrating relations with rank = 2 restriction
**************************** Parameter Estimates (Test 1) r = 0 ------ B1 = -0.1848 0.5704 -0.3273 0.0305 0.3143 -0.3448 0.0964 0.1485 -0.1406 B2 = -0.6046 1.6615 -1.3922 -0.1729 0.4501 -0.4796 -0.1631 0.5759 -0.5231 c1 = 0.1420 0.1517 0.1508 r = 1 ------ A = -0.6259 -0.2261 -0.0222 B = 0.7081 1.6282 -2.4581 B1 = 0.0579 1.0824 -0.8718 0.1182 0.4993 -0.5415 0.1050 0.1667 -0.1600 B2 = -0.5462 2.2436 -1.7723 -0.1518 0.6605 -0.6169 -0.1610 0.5966 -0.5366 c0 = 2.2351 c1 = -0.0366 0.0872 0.1444 r = 2 ------ A = -0.6259 0.1379 -0.2261 -0.0480 -0.0222 0.0137 B = 0.7081 -2.4407 1.6282 6.2883 -2.4581 -3.5321 B1 = 0.2438 0.6395 -0.6729 0.0535 0.6533 -0.6107 0.1234 0.1228 -0.1403 B2 = -0.3857 1.7970 -1.4915 -0.2076 0.8158 -0.7146 -0.1451 0.5524 -0.5089 c0 = 2.0901 -3.0289 c1 = -0.0104 0.0137 0.1528 B = 0.7081 -2.4407 1.6282 6.2883 -2.4581 -3.5321
fprintf('\n=== Test y1, y2,y3 for stationarity ===\n\n') [h0J,pVal0J] = jcontest(Y,1,'BVec',{[1 0 0]',[0 1 0]',[0 0 1]'})
=== Test y1, y2,y3 for stationarity === h0J = 1 1 1 pVal0J = 1.0e-003 * 0.3368 0.1758 0.1310
Step by step on video
1. ADF test whether the data is non stationary and have unit root
2. Cointegration test Engle Granger
Here is my documentation after learning the introduction of AI in courserERA.
read moreThe Cloud Natural Language API lets you extract entities from text, perform sentiment and syntactic analysis, and classify text into categories.
read moreNull result in economic is when the output does not supporting your hypothesis
read moreHi, I want to raise the issue related to know whether your OLS is ok or not.
read moreThe **45-degree line** in economics and geometry refers to a line where the values on the x-axis and y-axis are equal at every point. It typically has a slope of 1, meaning that for every unit increase along the horizontal axis (x), there is an equal unit increase along the vertical axis (y). Here are a couple of contexts where the 45-degree line is significant:
read moreThe **hyperinflation in Hungary** in the aftermath of World War II (1945–1946) is considered the worst case of hyperinflation in recorded history. The reasons behind this extreme economic event are numerous, involving a combination of war-related devastation, political instability, massive fiscal imbalances, and mismanagement of monetary policy. Here's an in-depth look at the primary causes:
read more**Neutrality of money** is a concept in economics that suggests changes in the **money supply** only affect **nominal variables** (like prices, wages, and exchange rates) and have **no effect on real variables** (like real GDP, employment, or real consumption) in the **long run**.
read moreCollaboratively administrate empowered markets via plug-and-play networks. Dynamically procrastinate B2C users after installed base benefits. Dramatically visualize customer directed convergence without
Comments