PhD Chapter - Hodrick Prescott Filter

(Comments)

This example shows how to use the Hodrick-Prescott filter to decompose a time series.

Generic placeholder image

Hi, my name is Dimas, I am a data enthusiast. At this moment I am writing several chapters related to Big Data, Macroprudential effect on the economy, and a couple of economic and IT research. If you are interested in collaborating, please write your mail to [email protected]

Thanks for stopping by. All the information here is curated from the most inspirational article on the site.

The formula

The Hodrick-Prescott filter separates a time series into growth and cyclical components with

\( y_t = g_t + c_t \)

yt=gt+ct

where yt is a time series, gt is the growth component of yt, and ct is the cyclical component of yt for t=1,...,T.

The objective function for the Hodrick-Prescott filter has the form

Tt=1c2t+λT1t=2((gt+1gt)(gtgt1))2

with a smoothing parameter λ. The programming problem is to minimize the objective over all g1,...,gT.

The conceptual basis for this programming problem is that the first sum minimizes the difference between the data and its growth component (which is the cyclical component) and the second sum minimizes the second-order difference of the growth component, which is analogous to minimization of the second derivative of the growth component.

Note that this filter is equivalent to a cubic spline smoother.

Use of the Hodrick-Prescott Filter to Analyze GNP Cyclicality

Using data similar to the data found in Hodrick and Prescott [1], plot the cyclical component of GNP. This result should coincide with the results in the paper. However, since the GNP data here and in the paper are both adjusted for seasonal variations with conversion from nominal to real values, differences can be expected due to differences in the sources for the pair of adjustments. Note that our data comes from the St. Louis Federal Reserve FRED database [2], which was downloaded with the Datafeed Toolbox™.

load Data_GNP

startdate = 1950;	% Date range is from 1947.0 to 2005.5 (quarterly)
enddate = 1979.25;	% Change these two lines to try alternative periods

startindex = find(dates == startdate);
endindex = find(dates == enddate);

gnpdates = dates(startindex:endindex);
gnpraw = log(DataTable.GNPR(startindex:endindex));

We run the filter for different smoothing parameters λ = 400, 1600, 6400, and . The infinite smoothing parameter just detrends the data.

[gnptrend4, gnpcycle4] = hpfilter(gnpraw,400);
[gnptrend16, gnpcycle16] = hpfilter(gnpraw,1600);
[gnptrend64, gnpcycle64] = hpfilter(gnpraw,6400);
[gnptrendinf, gnpcycleinf] = hpfilter(gnpraw,Inf);

Plot Cyclical GNP and Its Relationship with Long-Term Trend

The following code generates Figure 1 from Hodrick and Prescott [1].

plot(gnpdates,gnpcycle16,'b');
hold all
plot(gnpdates,gnpcycleinf - gnpcycle16,'r');
title('\bfFigure 1 from Hodrick and Prescott');
ylabel('\bfGNP Growth');
legend('Cyclical GNP','Difference');
hold off

Figure contains an axes object. The axes object with title F i g u r e blank 1 blank f r o m blank H o d r i c k blank a n d blank P r e s c o t t contains 2 objects of type line. These objects represent Cyclical GNP, Difference.

The blue line is the cyclical component with smoothing parameter 1600 and the red line is the difference with respect to the detrended cyclical component. The difference is smooth enough to suggest that the choice of smoothing parameter is appropriate.

Statistical Tests on Cyclical GNP

We will now reconstruct Table 1 from Hodrick and Prescott [1]. With the cyclical components, we compute standard deviations, autocorrelations for lags 1 to 10, and perform a Dickey-Fuller unit root test to assess non-stationarity. As in the article, we see that as lambda increases, standard deviations increase, autocorrelations increase over longer lags, and the unit root hypothesis is rejected for all but the detrended case. Together, these results imply that any of the cyclical series with finite smoothing is effectively stationary.

gnpacf4 = autocorr(gnpcycle4,'NumLags',10);
gnpacf16 = autocorr(gnpcycle16,'NumLags',10);
gnpacf64 = autocorr(gnpcycle64,'NumLags',10);
gnpacfinf = autocorr(gnpcycleinf,'NumLags',10);

[H4, ~, gnptest4] = adftest(gnpcycle4,'Model','ard');
[H16, ~, gnptest16] = adftest(gnpcycle16,'Model','ard');
[H64, ~, gnptest64] = adftest(gnpcycle64,'Model','ard');
[Hinf, ~, gnptestinf] = adftest(gnpcycleinf,'Model','ard');

displayResults(gnpcycle4,gnpcycle16,gnpcycle64,gnpcycleinf,...
    gnpacf4,gnpacf16,gnpacf64,gnpacfinf,...
    gnptest4,gnptest16,gnptest64,gnptestinf,...
    H4,H16,H64,Hinf);
Table 1 from Hodrick and Prescott Reference
              Smoothing Parameter
                     400        1600        6400    Infinity
  Std. Dev.         1.52        1.75        2.06        3.11
  Autocorrelations
           1        0.74        0.78        0.82        0.92
           2        0.38        0.47        0.57        0.81
           3        0.05        0.17        0.33        0.70
           4       -0.21       -0.07        0.12        0.59
           5       -0.36       -0.24       -0.03        0.50
           6       -0.39       -0.30       -0.10        0.44
           7       -0.35       -0.31       -0.13        0.39
           8       -0.28       -0.29       -0.15        0.35
           9       -0.22       -0.26       -0.15        0.31
          10       -0.19       -0.25       -0.17        0.26
  Unit Root        -4.35       -4.13       -3.79       -2.28
  Reject H0            1           1           1           0

Local Function

function displayResults(gnpcycle4,gnpcycle16,gnpcycle64,gnpcycleinf,...
    gnpacf4,gnpacf16,gnpacf64,gnpacfinf,...
    gnptest4,gnptest16,gnptest64,gnptestinf,...
    H4,H16,H64,Hinf)
% DISPLAYRESULTS Display cyclical GNP test results in tabular form
    fprintf(1,'Table 1 from Hodrick and Prescott Reference\n');
    fprintf(1,'  %10s  %s\n',' ','Smoothing Parameter');
    fprintf(1,'  %10s  %10s  %10s  %10s  %10s\n',' ','400','1600','6400','Infinity');
    fprintf(1,'  %-10s  %10.2f  %10.2f  %10.2f  %10.2f\n','Std. Dev.', ...
	100*std(gnpcycle4),100*std(gnpcycle16),100*std(gnpcycle64),100*std(gnpcycleinf));
    fprintf(1,'  Autocorrelations\n');
    for i=2:11
	fprintf(1,'  %10g  %10.2f  %10.2f  %10.2f  %10.2f\n',(i-1), ...
		gnpacf4(i),gnpacf16(i),gnpacf64(i),gnpacfinf(i))
    end
    fprintf(1,'  %-10s  %10.2f  %10.2f  %10.2f  %10.2f\n','Unit Root', ...
	gnptest4,gnptest16,gnptest64,gnptestinf);
    fprintf(1,'  %-10s  %10d  %10d  %10d  %10d\n','Reject H0',H4,H16,H64,Hinf);
end

References

[1] Hodrick, Robert J, and Edward C. Prescott. "Postwar U.S. Business Cycles: An Empirical Investigation." Journal of Money, Credit, and Banking. Vol. 29, No. 1, 1997, pp. 1–16.

[2] U.S. Federal Reserve Economic Data (FRED), Federal Reserve Bank of St. Louis, https://fred.stlouisfed.org/.

See Also

Currently unrated

Comments

Riddles

22nd Jul- 2020, by: Editor in Chief
524 Shares 4 Comments
Generic placeholder image
20 Oct- 2019, by: Editor in Chief
524 Shares 4 Comments
Generic placeholder image
20Aug- 2019, by: Editor in Chief
524 Shares 4 Comments
10Aug- 2019, by: Editor in Chief
424 Shares 4 Comments
Generic placeholder image
10Aug- 2015, by: Editor in Chief
424 Shares 4 Comments

More News  »

Fixing the issue in assumption of OLS step by step or one by one

Recent news

Hi, I want to raise the issue related to know whether your OLS is ok or not. 

read more
2 weeks, 6 days ago

Meaning of 45 degree in economics chart

Recent news

The **45-degree line** in economics and geometry refers to a line where the values on the x-axis and y-axis are equal at every point. It typically has a slope of 1, meaning that for every unit increase along the horizontal axis (x), there is an equal unit increase along the vertical axis (y). Here are a couple of contexts where the 45-degree line is significant:

read more
1 month, 3 weeks ago

hyperinflation in hungary

Recent news

The **hyperinflation in Hungary** in the aftermath of World War II (1945–1946) is considered the worst case of hyperinflation in recorded history. The reasons behind this extreme economic event are numerous, involving a combination of war-related devastation, political instability, massive fiscal imbalances, and mismanagement of monetary policy. Here's an in-depth look at the primary causes:

read more
2 months ago

what is neutrailty of money

Recent news

**Neutrality of money** is a concept in economics that suggests changes in the **money supply** only affect **nominal variables** (like prices, wages, and exchange rates) and have **no effect on real variables** (like real GDP, employment, or real consumption) in the **long run**.

read more
2 months ago

Japan deflationary phenomenon

Recent news

Deflation in Japan, which has persisted over several decades since the early 1990s, is a complex economic phenomenon. It has been influenced by a combination of structural, demographic, monetary, and fiscal factors. Here are the key reasons why deflation occurred and persisted in Japan:

read more
2 months ago

What the tips against inflation

Recent news

Hedging against inflation involves taking financial or investment actions designed to protect the purchasing power of money in the face of rising prices. Inflation erodes the value of currency over time, so investors seek assets or strategies that tend to increase in value or generate returns that outpace inflation. Below are several ways to hedge against inflation:

read more
2 months ago

Long and short run philip curve

Recent news

The **Phillips Curve** illustrates the relationship between inflation and unemployment, and how this relationship differs in the **short run** and the **long run**. Over time, economists have modified the original Phillips Curve framework to reflect more nuanced understandings of inflation and unemployment dynamics.

read more
2 months ago

How the government deal with inflation (monetary and fiscal) policies

Recent news

Dealing with inflation requires a combination of **fiscal and monetary policy** tools. Policymakers adjust these tools depending on the nature of inflation—whether it's **demand-pull** (inflation caused by excessive demand in the economy) or **cost-push** (inflation caused by rising production costs). Below are key approaches to controlling inflation through fiscal and monetary policy.

read more
2 months ago

More News »

Generic placeholder image

Collaboratively administrate empowered markets via plug-and-play networks. Dynamically procrastinate B2C users after installed base benefits. Dramatically visualize customer directed convergence without