PhD Chapter - Hodrick Prescott Filter
Posted by: admin 3 years, 1 month ago
(Comments)
This example shows how to use the Hodrick-Prescott filter to decompose a time series.
Hi, my name is Dimas, I am a data enthusiast. At this moment I am writing several chapters related to Big Data, Macroprudential effect on the economy, and a couple of economic and IT research. If you are interested in collaborating, please write your mail to [email protected]
Thanks for stopping by. All the information here is curated from the most inspirational article on the site.
The formula
The Hodrick-Prescott filter separates a time series into growth and cyclical components with
\( y_t = g_t + c_t \)
yt=gt+ct
where yt is a time series, gt is the growth component of yt, and ct is the cyclical component of yt for t=1,...,T.
The objective function for the Hodrick-Prescott filter has the form
Tt=1c2t+λT−1t=2((gt+1−gt)−(gt−gt−1))2
with a smoothing parameter λ. The programming problem is to minimize the objective over all g1,...,gT.
The conceptual basis for this programming problem is that the first sum minimizes the difference between the data and its growth component (which is the cyclical component) and the second sum minimizes the second-order difference of the growth component, which is analogous to minimization of the second derivative of the growth component.
Note that this filter is equivalent to a cubic spline smoother.
Use of the Hodrick-Prescott Filter to Analyze GNP Cyclicality
Using data similar to the data found in Hodrick and Prescott [1], plot the cyclical component of GNP. This result should coincide with the results in the paper. However, since the GNP data here and in the paper are both adjusted for seasonal variations with conversion from nominal to real values, differences can be expected due to differences in the sources for the pair of adjustments. Note that our data comes from the St. Louis Federal Reserve FRED database [2], which was downloaded with the Datafeed Toolbox™.
load Data_GNP startdate = 1950; % Date range is from 1947.0 to 2005.5 (quarterly) enddate = 1979.25; % Change these two lines to try alternative periods startindex = find(dates == startdate); endindex = find(dates == enddate); gnpdates = dates(startindex:endindex); gnpraw = log(DataTable.GNPR(startindex:endindex));
We run the filter for different smoothing parameters λ = 400, 1600, 6400, and ∞. The infinite smoothing parameter just detrends the data.
[gnptrend4, gnpcycle4] = hpfilter(gnpraw,400); [gnptrend16, gnpcycle16] = hpfilter(gnpraw,1600); [gnptrend64, gnpcycle64] = hpfilter(gnpraw,6400); [gnptrendinf, gnpcycleinf] = hpfilter(gnpraw,Inf);
Plot Cyclical GNP and Its Relationship with Long-Term Trend
The following code generates Figure 1 from Hodrick and Prescott [1].
plot(gnpdates,gnpcycle16,'b'); hold all plot(gnpdates,gnpcycleinf - gnpcycle16,'r'); title('\bfFigure 1 from Hodrick and Prescott'); ylabel('\bfGNP Growth'); legend('Cyclical GNP','Difference'); hold off
The blue line is the cyclical component with smoothing parameter 1600 and the red line is the difference with respect to the detrended cyclical component. The difference is smooth enough to suggest that the choice of smoothing parameter is appropriate.
Statistical Tests on Cyclical GNP
We will now reconstruct Table 1 from Hodrick and Prescott [1]. With the cyclical components, we compute standard deviations, autocorrelations for lags 1 to 10, and perform a Dickey-Fuller unit root test to assess non-stationarity. As in the article, we see that as lambda increases, standard deviations increase, autocorrelations increase over longer lags, and the unit root hypothesis is rejected for all but the detrended case. Together, these results imply that any of the cyclical series with finite smoothing is effectively stationary.
gnpacf4 = autocorr(gnpcycle4,'NumLags',10); gnpacf16 = autocorr(gnpcycle16,'NumLags',10); gnpacf64 = autocorr(gnpcycle64,'NumLags',10); gnpacfinf = autocorr(gnpcycleinf,'NumLags',10); [H4, ~, gnptest4] = adftest(gnpcycle4,'Model','ard'); [H16, ~, gnptest16] = adftest(gnpcycle16,'Model','ard'); [H64, ~, gnptest64] = adftest(gnpcycle64,'Model','ard'); [Hinf, ~, gnptestinf] = adftest(gnpcycleinf,'Model','ard'); displayResults(gnpcycle4,gnpcycle16,gnpcycle64,gnpcycleinf,... gnpacf4,gnpacf16,gnpacf64,gnpacfinf,... gnptest4,gnptest16,gnptest64,gnptestinf,... H4,H16,H64,Hinf);
Table 1 from Hodrick and Prescott Reference Smoothing Parameter 400 1600 6400 Infinity Std. Dev. 1.52 1.75 2.06 3.11 Autocorrelations 1 0.74 0.78 0.82 0.92 2 0.38 0.47 0.57 0.81 3 0.05 0.17 0.33 0.70 4 -0.21 -0.07 0.12 0.59 5 -0.36 -0.24 -0.03 0.50 6 -0.39 -0.30 -0.10 0.44 7 -0.35 -0.31 -0.13 0.39 8 -0.28 -0.29 -0.15 0.35 9 -0.22 -0.26 -0.15 0.31 10 -0.19 -0.25 -0.17 0.26 Unit Root -4.35 -4.13 -3.79 -2.28 Reject H0 1 1 1 0
Local Function
function displayResults(gnpcycle4,gnpcycle16,gnpcycle64,gnpcycleinf,... gnpacf4,gnpacf16,gnpacf64,gnpacfinf,... gnptest4,gnptest16,gnptest64,gnptestinf,... H4,H16,H64,Hinf) % DISPLAYRESULTS Display cyclical GNP test results in tabular form fprintf(1,'Table 1 from Hodrick and Prescott Reference\n'); fprintf(1,' %10s %s\n',' ','Smoothing Parameter'); fprintf(1,' %10s %10s %10s %10s %10s\n',' ','400','1600','6400','Infinity'); fprintf(1,' %-10s %10.2f %10.2f %10.2f %10.2f\n','Std. Dev.', ... 100*std(gnpcycle4),100*std(gnpcycle16),100*std(gnpcycle64),100*std(gnpcycleinf)); fprintf(1,' Autocorrelations\n'); for i=2:11 fprintf(1,' %10g %10.2f %10.2f %10.2f %10.2f\n',(i-1), ... gnpacf4(i),gnpacf16(i),gnpacf64(i),gnpacfinf(i)) end fprintf(1,' %-10s %10.2f %10.2f %10.2f %10.2f\n','Unit Root', ... gnptest4,gnptest16,gnptest64,gnptestinf); fprintf(1,' %-10s %10d %10d %10d %10d\n','Reject H0',H4,H16,H64,Hinf); end
References
[1] Hodrick, Robert J, and Edward C. Prescott. "Postwar U.S. Business Cycles: An Empirical Investigation." Journal of Money, Credit, and Banking. Vol. 29, No. 1, 1997, pp. 1–16.
[2] U.S. Federal Reserve Economic Data (FRED), Federal Reserve Bank of St. Louis, https://fred.stlouisfed.org/
.
See Also
Kenapa sekolah PhD butuh waktu lama!?
Recent newsKali ini kita akan bahas kenapa sekolah PhD itu lama! Tanpa panjang lebar, berikut cara ngeles gw! Maksudnya berikut alasannya! Hope its relate with you!
read more5 days, 19 hours ago
Using Vertex AI for zero one and two three AI prediction
Recent newsHere is my documentation after learning the introduction of AI in courserERA.
read more3 weeks, 1 day ago
Neural network with API for pre-trained API
Recent newsOverview
The Cloud Natural Language API lets you extract entities from text, perform sentiment and syntactic analysis, and classify text into categories.
read more3 weeks, 4 days ago
what is null result
Recent newsNull result in economic is when the output does not supporting your hypothesis
read more3 weeks, 5 days ago
3 weeks, 5 days ago
Fixing the issue in assumption of OLS step by step or one by one
Recent newsHi, I want to raise the issue related to know whether your OLS is ok or not.
read more1 month, 3 weeks ago
Meaning of 45 degree in economics chart
Recent newsThe **45-degree line** in economics and geometry refers to a line where the values on the x-axis and y-axis are equal at every point. It typically has a slope of 1, meaning that for every unit increase along the horizontal axis (x), there is an equal unit increase along the vertical axis (y). Here are a couple of contexts where the 45-degree line is significant:
read more2 months, 3 weeks ago
Collaboratively administrate empowered markets via plug-and-play networks. Dynamically procrastinate B2C users after installed base benefits. Dramatically visualize customer directed convergence without
Comments