PhD Chapter - All things related to regression in Matlab
Posted by: admin 3 years, 2 months ago
(Comments)
Today I will write here all things related to regression in Matlab
5. What to do with missing data
1. Simple regression
What we will learn from this code
- Everything will be simple when we use a picture to describe
- See how the line of regression
- See how far the dot with the line
% % Acknowledgement: Mike X Cohen, sincxpress.com % % a clear MATLAB workspace is a clear mental workspace close all; clear, clc %% example: effects of sleep on food spending data = [ 5 47 5.5 53 6 52 6 44 7 39 7 49 7.5 50 8 38 8.5 43 9 40 ]; % start by showing the data % hold on meaning you still want to run another operation in the picture figure(1), clf, hold on % the x is in column 1 and y column 2 plot(data(:,1),data(:,2),'ko','markerfacecolor','k','markersize',10) xlabel('Hours of sleep'), ylabel('Fijian dollars') % gte current axes on specific limit of x aand y, so it makes more cleear % in the zoom of picture set(gca,'xlim',[4 10],'ylim',[36 54]) %% "manual" regression via least-squares fitting % create the design matrix % desmat is design matrix % cat is concatenate array % category 1 is the concatenate row become double (two times) % example matrix 3x3 and 3x3, category 1 will become matrix 6 x 3 % category 2 is the concatenate column become two times % here (10 x 1) and (10 x 1) will become 10 x 2 desmat = cat(2,ones(10,1),data(:,1)); % compute the beta parameters (regression coefficients) beta = desmat\data(:,2); % predicted data values yHat = desmat*beta; %% show the predicted results on top of the "real" data % predicted results plot(data(:,1),yHat,'s-','color','b','markersize',10,'markerfacecolor','b') % show the residuals for i=1:10 plot([1 1]*data(i,1),[data(i,2) yHat(i)],'m--') end h = legend({'Data (y)';'Model (\^{y})';'Residuals'},'Interpreter','latex'); set(h,'box','off') %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% now with the stats toolbox %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% [beta2,b_CI,resids,rint,stats] = regress(data(:,2),desmat); % stats vector consist of R2, F, p-val, error variance stats % compare the betas [ beta beta2 ] %% done.
From this
%1. First is clean all the data
% a clear MATLAB workspace is a clear mental workspace
close all; clear; clc
%2. Import with xls read
[num,txt,raw]= xlsread("SingaporeGDP.xlsx")
%changetheyearto num
%3. check sizes and outputs
whos
%4. Make the matrix from the data
% initialize matrices
%M is the matrix where there is 51 row with 23 column
GDP = num((2:43),3);
RealInterest = num((2:43),4);
YearM = data((2:43),2);
YearM = str2double(YearM);
%create design matrix
desmat = cat(2,ones(42,1),RealInterest(:,:));
%and regress it
[beta2,b_CI,resids,rint,stats] = regress(GDP,desmat);
2. Multiple regression
A couple of things need to be considered before we run the model
- The interpretation of \( \beta \) is the 1 increase in beta, will affect the dependent variable into what is the constant in beta
- Sometimes beta is not in the standardized, for example, the situation where in time there is an hour, minutes and seconds, how it can be connected with calories. So the way to do it is by using standard deviation. \( b_k = \beta_k \frac{s_{x_k}}{s_y}\)
%%
% VIDEO: Multiple regression
%
% Acknowledgement: Mike X Cohen, sincxpress.com
%
%%
% a clear MATLAB workspace is a clear mental workspace
close all; clear, clc
%% example: effects of sleep and study hours on exam scores
%%% create the data
exam_scores = [];
for ei=0:4
exam_scores = [ exam_scores 60*ones(1,6)+linspace(-1,5,6)*ei ];
end
exam_scores = exam_scores'; % force column vector
% repmat is create matrix with a value of x in matrix y * z, repmat(x,y,z)
% linspace is create a group of number between 2 until 8 with 6 number
hours_studied = repmat(linspace(2,8,6),1,5)';
% thee transpose of value between 6 to 10 with 30 number
ave_sleep_hrs = linspace(6,10,30)';
%% plot the data
% stratify by hours studied
figure(1), clf, hold on
% fewer than 4 hours studied
plotidx = hours_studied<4.1;
plot(ave_sleep_hrs(plotidx),exam_scores(plotidx),'ko','markerfacecolor','k','markersize',10)
% 5-6 hours studied
plotidx = hours_studied>4.9 & hours_studied<6.1;
plot(ave_sleep_hrs(plotidx),exam_scores(plotidx),'rs','markerfacecolor','r','markersize',10)
% more than 6 hours
plotidx = hours_studied>6;
plot(ave_sleep_hrs(plotidx),exam_scores(plotidx),'b^','markerfacecolor','b','markersize',10)
xlabel('Hours of sleep'), ylabel('Exam score')
legend({'<4 hours studied';'5-6 hours studied';'>7 hours studied'})
%% compute the multiple regression
% first create the design matrix
desmat = [ ones(30,1) ave_sleep_hrs hours_studied ave_sleep_hrs.*hours_studied ];
[beta,b_CI,resids,rint,stats] = regress(exam_scores,desmat);
% stats vector is R2, F, p-val, error variance
stats
%% inspect the residuals
figure(2), clf
plot(exam_scores,resids,'ks','markerfacecolor','k')
xlabel('Exam scores')
ylabel('Model residuals')
%% correlation of IVs
corr(desmat(:,2:end))
%% done.
And the next one is if we use every different mechanism for regression
%
% TEACHER: Mike X Cohen, sincxpress.com
%
%%
% a clear MATLAB workspace is a clear mental workspace
close all; clear, clc
%% example: effects of sleep and study hours on exam scores
%%% create the data
exam_scores = [];
for ei=0:4
exam_scores = [ exam_scores 60*ones(1,6)+linspace(-1,5,6)*ei ];
end
exam_scores = exam_scores'; % force column vector
hours_studied = repmat(linspace(2,8,6),1,5)';
ave_sleep_hrs = linspace(6,10,30)';
%% plot the data
% stratify by hours studied
figure(1), clf, hold on
% fewer than 4 hours studied
plotidx = hours_studied<4.1;
plot(ave_sleep_hrs(plotidx),exam_scores(plotidx),'ko','markerfacecolor','k','markersize',10)
% 5-6 hours studied
plotidx = hours_studied>4.9 & hours_studied<6.1;
plot(ave_sleep_hrs(plotidx),exam_scores(plotidx),'rs','markerfacecolor','r','markersize',10)
% more than 6 hours
plotidx = hours_studied>6;
plot(ave_sleep_hrs(plotidx),exam_scores(plotidx),'b^','markerfacecolor','b','markersize',10)
xlabel('Hours of sleep'), ylabel('Exam score')
legend({'<4 hours studied';'5-6 hours studied';'>7 hours studied'})
%% compute the multiple regression
% first create the design matrix
desmat = [ ones(30,1) ave_sleep_hrs hours_studied ave_sleep_hrs.*hours_studied ];
[beta,b_CI,resids,rint,stats] = regress(exam_scores,desmat);
% stats vector is R2, F, p-val, error variance
stats
%% inspect the residuals
figure(2), clf
plot(exam_scores,resids,'ks','markerfacecolor','k')
xlabel('Exam scores')
ylabel('Model residuals')
%% using fitlm
% with explicit intercept
lm1 = fitlm(desmat,exam_scores,'VarNames',{'Intercept','Ave sleep','Study hours','Interaction','Exam scores'})
% without intercept
% lm2 = fitlm(desmat(:,2:end),exam_scores,'VarNames',{'Ave sleep','Studyhours','Interaction','Exam scores'});
% without interaction term
lm3 = fitlm(desmat(:,2:3),exam_scores,'VarNames',{'Ave sleep','Study hours','Exam scores'});
% specify the model
lm4 = fitlm(desmat(:,2:3),exam_scores,'exam ~ sleep*study',...
'VarNames',{'sleep','study','exam'});
%% correlation of IVs
corr(desmat(:,2:end))
%% done.
%% % COURSE: Master statistics and machine learning: intuition, math, code % URL: udemy.com/course/statsml_x/?couponCode=202006 % % SECTION: Regression % VIDEO: Polynomial regression % % TEACHER: Mike X Cohen, sincxpress.com % %% % a clear MATLAB workspace is a clear mental workspace close all; clear; clc pkg load statistics % load Octave stats package %% generate the data n = 30; x = linspace(-2,4,n); y1 = x.^2 + randn(1,n); y2 = x.^3 + randn(1,n); %%% plot the data figure(1), clf, hold on plot(x,y1,'ko','markersize',10,'markerfacecolor','r','linewidth',2) plot(x,y2,'ko','markersize',10,'markerfacecolor','g','linewidth',2) legend({'Quadratic','Cubic'}) %% now for a polynomial fit % for y1 pterms = polyfit(x,y1,2); yHat1 = polyval(pterms,x); plot(x,yHat1,'r','linewidth',2) % for y2 pterms = polyfit(x,y2,3); yHat2 = polyval(pterms,x); plot(x,yHat2,'g','linewidth',2) %% compute R2 % compute R2 for several polynomial orders orders = 1:5; % output matrices r2 = zeros(2,length(orders)); sse = zeros(2,length(orders)); % the loop! for oi=1:length(orders) % fit the model with oi terms pterms = polyfit(x,y1,orders(oi)); yHat = polyval(pterms,x); % compute R2 ss_eta = sum((y1-yHat).^2); % numerator ss_tot = sum((y1-mean(y1)).^2); % denominator r2(1,oi) = 1 - ss_eta/ss_tot; % R^2 sse(1,oi) = ss_eta; % store just the SSe for model comparison later %%% repeat for y2 pterms = polyfit(x,y2,orders(oi)); yHat = polyval(pterms,x); ss_eta = sum((y2-yHat).^2); ss_tot = var(y2)*(n-1); r2(2,oi) = 1 - ss_eta/ss_tot; sse(2,oi) = ss_eta; % store just the SSe for model comparison later end % plot the results figure(2), clf subplot(211) plot(orders,r2,'s-','linewidth',2,'markerfacecolor','w','markersize',12) set(gca,'xlim',[orders(1)-.5 orders(end)+.5],'xtick',orders) xlabel('Polynomial model order') ylabel('Model R^2') legend({'y_1 = x^2';'y_2 = x^3'}) % compute the Bayes Information Criterion bic = n*log(sse) + orders*log(n); subplot(212) plot(orders,bic,'s-','linewidth',2,'markerfacecolor','w','markersize',12) set(gca,'xlim',[orders(1)-.5 orders(end)+.5],'xtick',orders) xlabel('Polynomial model order') ylabel('BIC') zoom on %% done.
%% % COURSE: Master statistics and machine learning: intuition, math, code % URL: udemy.com/course/statsml_x/?couponCode=202006 % % SECTION: Regression % VIDEO: Logistic regression % % TEACHER: Mike X Cohen, sincxpress.com % %% % a clear MATLAB workspace is a clear mental workspace close all; clear; clc pkg load statistics % load Octave stats package %% generate the data % columns are: exam (pass/fail), study hours, sleep hours data = [ 0 7.9 4.4 0 7.9 5.2 0 2.8 7.5 0 5.4 4.6 0 6.1 5.5 0 4.5 6.1 0 6.9 6.6 0 2.3 3.1 0 1.9 5.9 0 1 3.2 1 3.1 7.5 1 5.7 7.8 1 5.6 6.1 1 4.7 5.4 1 4.2 10.5 1 2 8.2 1 7.7 7.2 1 6.5 7.2 1 5.1 5.9 1 3.7 7.9 ]; % show the data figure(1), clf, hold on plot([data(:,1)-.05 data(:,1)+.05]',data(:,2:3)','k','HandleVisibility','off') plot(data(:,1)-.05,data(:,2),'ks','markerfacecolor',[255 204 255]/255,'markersize',15) plot(data(:,1)+.05,data(:,3),'ks','markerfacecolor',[100 255 255]/255,'markersize',15) set(gca,'xtick',[0 1],'xlim',[-.5 1.5],'ylim',[0 11],'xticklabel',{'Fail';'Pass'}) ylabel('Hours sleep or study') legend({'Study';'Sleep'}) %% now run the logistic regression [intercept,betas,~,~,~,predvals] = logistic_regression(data(:,1),data(:,2:3),1); %% compute the model prediction accuracy %%% IMPORTANT NOTE: Octave outputs the predicted *accuracy for each label*, not the prediction for label=1 % convert to accuracy aveacc = mean(predvals>.5); %% plotting figure(2), clf, hold on plot(1:10,1-predvals(1:10),'ks','markerfacecolor','b','markersize',10) plot(11:20,predvals(11:20),'ks','markerfacecolor','b','markersize',10,'HandleVisibility','off') plot(get(gca,'xlim'),[1 1]*.5,'--','color','b','linewidth',2) plot([1 1]*10.5,get(gca,'ylim'),'--','color','b','linewidth',2) xlabel('Individual'), ylabel('p(pass)') title([ 'Overall accuracy: ' num2str(aveacc) ]) legend({'Prediction';'Cut-off'}) %% done.
5. What to do with missing data
Kenapa sekolah PhD butuh waktu lama!?
Recent newsKali ini kita akan bahas kenapa sekolah PhD itu lama! Tanpa panjang lebar, berikut cara ngeles gw! Maksudnya berikut alasannya! Hope its relate with you!
read more4 days, 20 hours ago
Using Vertex AI for zero one and two three AI prediction
Recent newsHere is my documentation after learning the introduction of AI in courserERA.
read more3 weeks ago
Neural network with API for pre-trained API
Recent newsOverview
The Cloud Natural Language API lets you extract entities from text, perform sentiment and syntactic analysis, and classify text into categories.
read more3 weeks, 3 days ago
what is null result
Recent newsNull result in economic is when the output does not supporting your hypothesis
read more3 weeks, 4 days ago
3 weeks, 4 days ago
Fixing the issue in assumption of OLS step by step or one by one
Recent newsHi, I want to raise the issue related to know whether your OLS is ok or not.
read more1 month, 3 weeks ago
Meaning of 45 degree in economics chart
Recent newsThe **45-degree line** in economics and geometry refers to a line where the values on the x-axis and y-axis are equal at every point. It typically has a slope of 1, meaning that for every unit increase along the horizontal axis (x), there is an equal unit increase along the vertical axis (y). Here are a couple of contexts where the 45-degree line is significant:
read more2 months, 3 weeks ago
Collaboratively administrate empowered markets via plug-and-play networks. Dynamically procrastinate B2C users after installed base benefits. Dramatically visualize customer directed convergence without
Comments