Blog

Viewing posts by admin

Some notes about python and Zen of Python

Explore Python syntax

Python is a flexible programming language used in a wide range of fields, including software development, machine learning, and data analysis. Python is one of the most popular programming languages for data professionals, so getting familiar with its fundamental syntax and semantics will be useful for your future career. In this reading, you will learn about Python’s syntax and semantics, as well as where to find resources to further your learning.

Understanding Tier 1 Capital, common equeity tier 1 Capital, and risk weighted asset through asking the right question

Week 1 to week 6 in learning VAR

Week 1: Introduction to Time Series Analysis

Overview of Time Series Data:

python
# Load necessary libraries import pandas as pd import matplotlib.pyplot as plt # Load and visualize time series data data = pd.read_csv('your_time_series_data.csv') plt.figure(figsize=(10, 6)) plt.plot(data['Date'], data['Value']) plt.title('Time Series Data') plt.xlabel('Date') plt.ylabel('Value') plt.show()

Time Series Components:

python
# Decomposition of time series data from statsmodels.tsa.seasonal import seasonal_decompose result = seasonal_decompose(data['Value'], model='additive', period=12) result.plot() plt.show()

Statistical Properties of Time Series:

python
# Stationarity check using Augmented Dickey-Fuller test from statsmodels.tsa.stattools import adfuller result = adfuller(data['Value']) print('ADF Statistic:', result[0]) print('p-value:', result[1]) print('Critical Values:', result[4])

Week 2: Fundamentals of Vector Autoregression (VAR)

Introduction to VAR Model:

python
# Import VAR model from statsmodels from statsmodels.tsa.vector_ar.var_model import VAR # Create VAR model model = VAR(data)

Estimation and Interpretation:

python
# Fit the VAR model results = model.fit() # Summary of the VAR model print(results.summary())

Granger Causality and Lag Selection:

python
# Granger causality test from statsmodels.tsa.stattools import grangercausalitytests max_lag = 4 # maximum lag to test causality granger_test_result = grangercausalitytests(data, max_lag)

Week 3: Implementing VAR in Python

Building a VAR Model in Python:

python
# Implementing VAR model using statsmodels library model = VAR(data) results = model.fit(maxlags=4) # fitting the model with selected maximum lag

Visualization and Forecasting with VAR:

python
# Plotting results and visualizing time series forecasts results.plot_forecast(10)

Implementing Impulse Response Analysis:

python
# Impulse Response Analysis irf = results.irf(10) irf.plot(orth=False)

This breakdown provides code snippets for key concepts covered in the weekly plan. For the complete course, you would expand upon these snippets, incorporate explanations, provide datasets, and encourage students to apply these techniques to various time series datasets and financial data, ensuring they understand the theory and practical implementation of VAR models in Python.

Learning Vector Autoregression in 6 weeks

Here is the program

week 6 Finance with Python

Week 6: Financial Projects and Advanced Topics

Riddles

22nd Jul- 2020, by: Editor in Chief
524 Shares 4 Comments
Generic placeholder image
20 Oct- 2019, by: Editor in Chief
524 Shares 4 Comments
Generic placeholder image
20Aug- 2019, by: Editor in Chief
524 Shares 4 Comments
10Aug- 2019, by: Editor in Chief
424 Shares 4 Comments
Generic placeholder image
10Aug- 2015, by: Editor in Chief
424 Shares 4 Comments

More News  »

Sekolah doktor itu bukan hukuman! Yuk atur waktumu!

Recent news
1 day, 8 hours ago

Kenapa sekolah PhD butuh waktu lama!?

Recent news

Kali ini kita akan bahas kenapa sekolah PhD itu lama! Tanpa panjang lebar, berikut cara ngeles gw! Maksudnya berikut alasannya! Hope its relate with you!

read more
1 day, 8 hours ago

Using Vertex AI for zero one and two three AI prediction

Recent news

Here is my documentation after learning the introduction of AI in courserERA.

read more
2 weeks, 4 days ago

Neural network with API for pre-trained API

Recent news

Overview

The Cloud Natural Language API lets you extract entities from text, perform sentiment and syntactic analysis, and classify text into categories.

read more
2 weeks, 6 days ago

what is null result

Recent news

Null result in economic is when the output does not supporting your hypothesis

read more
3 weeks, 1 day ago

Big Query in Google cloud - the first small step to become solution architect

Recent news
3 weeks, 1 day ago

Fixing the issue in assumption of OLS step by step or one by one

Recent news

Hi, I want to raise the issue related to know whether your OLS is ok or not. 

read more
1 month, 2 weeks ago

Meaning of 45 degree in economics chart

Recent news

The **45-degree line** in economics and geometry refers to a line where the values on the x-axis and y-axis are equal at every point. It typically has a slope of 1, meaning that for every unit increase along the horizontal axis (x), there is an equal unit increase along the vertical axis (y). Here are a couple of contexts where the 45-degree line is significant:

read more
2 months, 3 weeks ago

More News »

Generic placeholder image

Collaboratively administrate empowered markets via plug-and-play networks. Dynamically procrastinate B2C users after installed base benefits. Dramatically visualize customer directed convergence without